If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y^2-29y+35=0
a = 6; b = -29; c = +35;
Δ = b2-4ac
Δ = -292-4·6·35
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-29)-1}{2*6}=\frac{28}{12} =2+1/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-29)+1}{2*6}=\frac{30}{12} =2+1/2 $
| -2x=88-30 | | -4+2(6a-5)=26+4a | | 14-2(t-2)=0 | | 14-2(t-2=0 | | 2q=11 | | 7q/3=21/18 | | u2–27u=0 | | 11+9=3×4x | | (x+2)(x-3)=(x+3)^2 | | (x)^4-5^x=0 | | 1-0.75(x+2)=5 | | 1-3/4(x+2)=5 | | 9−y=45 | | 6d=19 | | 30x+19x=650 | | w-36/5=-8 | | 8.3-k/4=3.5 | | 3(h+1)=18.h= | | 1/3x+89=113 | | 106=9d+7 | | 4x+5+3x+2=180 | | 4x+5+3x+2=189 | | 3(k+2)=-18 | | 16-n/18=-2 | | 3(v-4)=33 | | 21-r/28=-12 | | 3(v-1)=-21 | | |5t-8|=28 | | 5f-28=-11 | | Y+1=x+8 | | y+250=400 | | 29+92=29x-11 |